
A modified epsilon expansion for a Hamiltonian with cubic point-group symmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1973 J. Phys. A: Math. Nucl. Gen. 6 1667

(http://iopscience.iop.org/0301-0015/6/11/006)

Download details:

IP Address: 171.66.16.73

The article was downloaded on 02/06/2010 at 04:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/6/11
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math., Nucl. Gen., Vol. 6 ,  November 1973. Printed in Great Britain. 0 1973 
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Abstract. The critical behaviour, in zero field above the critical temperature, of a hamiltonian 
with hypercubic point-group symmetry is studied in the framework of the z expansion. 
An exponent associated with the anisotropy parameter A is calculated to order 2. It does 
not determine reliably whether or not A is an irrelevant variable in the critical region in 
three dimensions. The general structure of correlation functions is examined and found 
to be more complicated than in the isotropic case. It is suggested that these additional 
complications may be at least partially simplified by modifying the eigenvalue condition 
on the isotropic coupling constant to include the anisotropic coupling A. 

1. Introduction 

Universality has played a central role in recent theoretical developments in the descrip- 
tion of critical phenomena (for a review see Wilson and Kogut 1973). Loosely speaking, 
it may be stated that the gross behaviour of, for example, all ferromagnets (to choose a 
definite nomenclature) is the same near their critical temperatures. Associated with this 
concept is the realization that one may expect a meaningful description in the critical 
region from a model which contains the essential features of the interactions in the 
system without necessarily containing all the detailed microscopic interactions. 

One of the essential features of the interactions is the dimension n of the spin-density 
variable si(x), i = 1,2, . . . , n, in terms of which the basic hamiltonian is O(n) invariant 
and may be written 

Here s2 = X;= sisi, d is the dimension of space and the relevant temperature dependence 
is contained in r,, which is linear in temperature : 

ro = a+bT.  ( 2 )  
The O(n) invariance of this hamiltonian implies that one is considering an isotropic 

ferromagnet. This is certainly an idealization, and as an exercise in the study of univer- 
sality, one may introduce a further term 

with s4 = X;= s f .  This term reduces the symmetry to that of a hypercubic point group 
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and must be present if the system has only that symmetry. We do not consider its 
microscopic origin but work in the spirit that it contains at least some of the essential 
features of a true microscopic hamiltonian. 

In the framework of the renormalization group Wilson and Fisher (1972) looked at 
the fixed points of such a hamiltonian to order c(c = 4 - d )  for n = 2 and Wegner (1972b) 
obtained critical exponents in the disordered phase above the critical temperature to 
order c. 

More recently, in their renormalization group study, Cowley and Bruce (1973) make 
clear that at  least one other term may be necessary in the hamiltonian for the description 
of cubic systems (see also Fisher and Aharony 1973). 

The equation of state and free energy has been studied for A > 0 (Wallace 1973) in the 
limit of large spindimensionality n and the system shown to undergo a first order phase 
transition, with the spontaneous magnetization vanishing discontinuously by an amount 
dependent on the magnitude of anisotropy A. Far enough away from the transition 
temperature, the behaviour is essentially that of the isotropic model. 

Whether or not such behaviour holds for a physical system with n = 3 cannot be 
determined with any confidence by the large n expansion method, and to this end we 
study in this paper the hamiltonian (3) in the framework of the E expansion with n 
arbitrary. We consider only the behaviour above the transition temperature in zero 
external field and leave physical considerations and a study of the equation of state in the 
E expansion, for a future paper. 

The additional problems created by the term in equation (3) are well illustrated by 
the connected four-point correlation function at zero momentum and we restrict our 
attention to i t :  

Expectation values are calculated by Feynman graph expansion (see Wilson and Kogut 
1973). The denominator removes external legs and self-energy insertions on them. For 
the same reason that there are two couplings at order s4 in the hamiltonian, there are two 
independent terms, u1 and u2 , in the tensor decomposition of uijkl: 

( 5 )  ui jk l  = u l ( d i j d k l  + dikdj l  + d i l d j k )  + u 2 d i j k I  

where 

The outline of the paper is as follows. We consider A as small, A K uo , and in effect 
perform a systematic expansion in and A. This is not the attitude which one would 
normally adopt ; normally A would be regarded as a coupling constant, fixed in order to 
produce scaling correlation functions. However, we are interested in the effect of small 
anisotropy on an essentially isotropic system and wish to  have A free. In 0 2 we consider 
the term in u2 linear in A and evaluate it in the critical region to order c3. One obtains a 
critical exponent which determines whether or not A is an irrelevant variable. Unfortun- 
ately this exponent is not reliably determined in the c expansion method for n = 2 or 3 
and E = 1. In order to illustrate the structure of u 1  and u2 for higher powers of A, we 
consider the large n limit of uijkl in 9 3. There one sees the appearance of additional non- 
leading critical exponents differing from the most singular terms by orderc. It is suggested 
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that these corrections to the scaling behaviour may be simplified by modifying the E 

expansion by having a combination of uo and A constrained by an eigenvalue condition. 
In 9 4 it is shown that this may be implemented to  order A and to all orders in E in the 
term u l .  Section 5 contains an incomplete discussion of order A2 terms. Sufficient 
regularities are seen in these last two sections to merit further study. 

2. A A-related exponent 

In this section we consider the term in u2  in equation ( 5 )  linear in A. This is the leading 
contribution to u 2  in an expansion in E and A. We use the standard technique of introduc- 
ing into the free hamiltonian a renormalized mass r which is the inverse of zero-field 
susceptibility. The mass counterterms are taken account of by subtracting self-energy 
insertions at zero momentum. 

The graphs which contribute to order c 3  in the c expansion are shown in figure 1. It 
is to be understood that one sums over all possible positions of the A vertex in each 
graph in order to obtain the correct weight. One further point is that such graphs may 
also contribute to the term in u 1  linear in A and one must take care to separate the 
contributions to u 1  and u 2 .  This is easily done. Pictorially, i t  is convenient to draw 
modified Feynman graphs which also represent the way in which the spin indices i,j, k 

Figure 1. Graphs contributing to the four point correlation function to fourth order in 
perturbation theory. 
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and 1 flow through the diagram (see Wilson and Kogut 1973). The Bi jBk l  graphs will 
always be ‘separable’, by pulling apart two pairs ofexternal legs ; the B i j k l  graphs are ‘non- 
separable’, since the spin indices on the external legs must flow through the diagram to 
meet at the A vertex. The weights of the graphs which contribute to u2  at order A are 
shown in table 1. 

Table 1. Weights of graphs with one A vertex. The labelling is as in figure 1 

We require the analytic expressions for such graphs in the critical region of small r so 
that the resultant expressions are correct to order c3. These calculations have been 
performed by Nickel (1973) in a calculation involving the isotropic hamiltonian (1) and 
his results are shownfor completeness in table 2. In his calculations acut-offis introduced 
by inserting a k4 term in the denominator of propagators. Similar calculations have been 
performed using the Callan-Symanzik equation and renormalized perturbation theory 
(see Brezin et a1 1973b) and the two methods give the same final results. 

Finally, we note that the condition on uo which produces scaling in the 6 expansion 
with a k4 cut-off is given to order t3 by (Nickel 1973) 

U O S d z c  
U =  

2d7rd sin(zr/2) 

(z2-lOA)(5n+22)+4(n+2)/\/3 
n + 8  2(n + 8)2 

(6 )  
3n3+ 160n2+ 1192n+2632- 12(5n+22)(n+8)j(3) 

(n + 8)4 + 

where d and A are constants which never appear in final results, j(3) N 1.20, and s d  is the 
surface area of a unit sphere in d dimensions. With our convention on normalization of 
the anaytic expressions in table 2, a factor of u should be inserted for each u o  vertex in a 
diagram. 

With this information, it is straightforward to reconstruct the scaling behaviour of the 
u2 vertex. We find 

where 

6c 3(n2+4n+28)r2 a2 = -- 
n + 8  (n -k 8 ) 3  

3t3 
2(n + 8)’ 

-- [n4+36n3 + 172n2+336n- 1184- 16(n+8)(n2+7n+46)[(3)]. 

(8) 
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Table 2. Required analytic expressions for graphs with one A vertex. The labelling is as 
in figure 1 

1 

+[Inr+2-+c(ln2r+21n r ) + & 2 ( h 3 r + 3  in’r)] 

&[ln2r + 4  In r+4-fdln3r + 4  In’r + 4  In r)] 

&[2 ln2r+4 In r -  8 -  2n2+ 16A- 4 n 3 r + 2  ln2r+ (2-4A) In r)] 

&(ln3r+6 h 2 r +  12 In r) 

&i(fln3r+ln2r-2AInr) 

&[1n3r+4 ln2r +( - A’ + 8A) In r] 

&[+ ln3r +ln2r +( -4- A’+ 1012) In r ]  

&[$ In’r +( -4  - n2+ 8A) In r] 

&(+ ln3r + ln2r - 212 In r) 

&[ln2r+(4-fA) In r] 

hi(3) In r 

One checks also that all required exponentiation takes place. This may not be too 
surprising since one is really looking only at the correlation function 

evaluated with the isotropic hamiltonian (1) ; the s4 term is playing only the ‘geometrical’ 
role of producing the appropriate tensor form. 

It is particularly interesting to compare the above results with the leading term in the 
isotropic tensor function. According to  scaling laws (Wilson and Kogut 1973) this is 
given by 

u 1  x cr“’ (9) 

(10) El  = - - - --____ +--- E - 211 c ( n  + 2)r2 ( n  + 2 ) r 3  3(3n2 + 20n + 28)c3 
2 - q  2 2(n+8)’  4 (n+8) ’  ( n  + 8)4 

I f  a2 is greater than a l ,  A is an irrelevant variable because it will always appear 
associated with a larger power of r than the isotropic leading term. Then the effect of the 
anisotropy will be completely negligible except in quantities where the contribution of 
the isotropic interactions vanishes identically, such as the u2 term, and the transverse 
susceptibility in zero field below the critical temperature (Goldstone’s theorem). 

If a2 is less than a l ,  A is not irrelevant and will become the dominating interaction if r 
becomes small enough even though A << uo . This is a very clear example of the way that 
small parameters may produce strong effects in the critical region. Of course the form of 
the free energy may be such that r never becomes vanishingly small. For example for 
A > 0 when n is large enough (Wallace 1973) the system never reaches r = 0, but under- 
goes a first order phase transition to the ordered magnetic state ; at this point the O(A) 
effects are the same order of magnitude as the leading isotropic terms. 
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It is disappointing that the c expansion does not determine the sign of u2 - c t l  with 
any reliability. One finds 

C?2-u1 = ~- (4-n)c (5nZ+14n+ 152)~' (n+2)c3 
2(n + 8) 2(n + 8)3 4(n + 8)' 

-___ 

[n4+30n3+84n2-40n- 1632- 16(n+8)(nZ+7n+46)1(3)]. 
3c3 

2(n + 8)' 
-___ 

(1 1) 

For n = 3 this gives 

U 2 - c t l  = 0.045~-0.089c' +0*139c3. 

The radius of convergence of this series does not appear to extend to c = 1. It is a matter 
of conjecture whether the radius of convergence is nonzero or whether the series is 
asymptotic. 

3. Structure of higher corrections in A 

Such straightforward exponentiation of logarithms to produce scaling behaviour does 
not take place in other terms involving A. For example in the isotropic vertex u l ,  the 
term of order A arises first in figure l(b) which gives an analytic form CA In r. It is not a 
priori clear how this In r should be exponentiated to produce scaling behaviour. 

In this section we use the limit n + CO to elucidate the structure of the higher order 
terms in A in the E expansion. The features i t  illustrates may not be completely general 
but we have not discovered any discrepancies yet. A more convincing, but perhaps not so 
clear, method would involve use of the renormalization group. 

The leading contribution to u1 for n large and A = 0 has been discussed by Wilson 
(1973); we include it for completeness. It is given as a geometric sum of a stream of 
bubbles and the result is 

where 

and A is some cut-off. Evaluating Z(0, I )  for r << A', one finds 

Z(0, r) = ~ 2 ~ ) - d S d [ r ( 2 - ~ c ) r ( t c ) r - ' ' 2  -2A-'/c] +O(r' -f''/A2). (14) 

In general the diverging r-'" term in this expression controls the behaviour in the critical 
region (r + 0) and one obtains 

where a and b are constants given in equation (14). However, there is in general an 
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infinite series of powers of r of the form rmri2(m = 1 , 2 , .  . .) in this expression. One can 
eliminate all these nonleading terms if one fixes uo by the condition 

nuoaA-' = 1 (16) 
and produce only the leading term (15). The condition (16) is the equivalent in the large n 
limit of expression (6). 

The leading contribution and l / n  corrections to the O(A) term in u2 are given respecti- 
vely in figures 2(a)  and 2(b) (which contains the typical stream of bubbles). Their analytic 
expressions may be evaluated by standard methods (Wilson 1973) and one obtains 

u2 K Arm= 

with 

12 sin(+) r ( 2  - E )  

m( 1 - 92) r2( 1 - &)' 
U 2  = + 

Figure 2. The leading and l /n corrections to the correlation function u2 with one A vertex. 

Further it is readily seen that there are corrections to this leading behaviour involving an 
infinite series in r'12 but that all these correction terms vanish if uo obeys the condition 
(16). This illustrates the calculation of the previous section and indeed one easily checks 
that expressions (8) and (17) agree to O(c3, n-  '). 

As an aside, we note also that expressions (8) and (17) are in agreement with the scaling 
law 

$ = ( 6 - 1 ) ( 1 + u 2 - a 1 )  

with $ as given by Wallace (1973). 
Let us look now at the higher order terms in A in u 2 .  At order A2 the leading term is 

figure l (b) ,  which gives 54A2Z(0, r). This expression gives the expected leading behaviour 
proportional to r-'12 and a single non-leading term proportional to ro, from the existence 
of the cut-off A (see equation (14)). Unlike expression (19, there is only one additional 
non-leading term and it cannot be eliminated by any eigenvalue condition on uo . Thus 
the order A2 term in u1 must be expected to exponentiate to at least two powers of r, 
differing by order z. 

More generally, one may consider the term of order A' in u 2 .  The reader may convince 
himself that this is given by the sum of all graphs with 1 A vertices; all insertions of uo 
vertices are down by order l / n .  The analytic expressions for these graphs will give the 
expected leading behaviour proportional to r - ( f -  l w 2  with all less singular powers of 
r-'" up to ro. Thus the terms at order A' must exponentiate to a t  least 1 powers of r, 
differing by order E .  
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Although the situation now looks rather complicated, i t  is suggestive that at  a given 
order I in A all the non-leading powers of r are those associated with lower powers of A. 
This conjecture would imply that u 2  has the structure 

m 

u2 - Afl(A)raz+ 1 Atfi(A)rz1+1(z2-21) 
1 = 2  

with fi(0) = constant. This situation, where the full scaling behaviour is given in terms of 
functions of A rather than A alone, is analogous to the discussion in Wegner (1972a). A 
very limited verification of this structure in the c expansion is given in 9 5. 

Let us return now to the isotropic term, u l .  The order A correction to this vertex is 
given by the standard stream of bubbles with one A insertion. To order A, one finds 

(18) 

With the condition (16) on uo ,  one obtains two powers of r at order A, yo and rf. However 
in this expression one has the freedom of modifying the condition (16) on u o  by a term of 
order A in order to eliminate the non-leading rf behaviour. Using expressions (14), (1 5) 
and (16) it is straightforward to show that the condition 

u1 = $uo(l +&u,nl(O, r ) ) - l  +&uoAl(O, r)(12+nlt,l(O, r))(l +&,nl(O, r ) ) - 2 .  

Af 18A 
U, = -+- 

na n 

eliminates the non-leading r' term from expression (18) and leaves the correct scaling 
power of r ,  exactly as in the term linear in A in U*. 

The generalization of equation (19) in the c expansion is considered in the following 
section. It is shown there that such a generalized eigenvalue condition does exist at 
order A ; whether this result can be generalized to higher orders in A remains to be seen. 

Let us summarize this section. It is clear from the anisotropic term u 2  that one cannot 
expect the In r terms in the E expansion to  exponentiate to single powers of r ; at order A', 1 
powers of r will be present each differing by order c .  I t  is suggested that the non-leading 
powers of r are precisely those associated with lower powers of A. The structure in the 
isotropic function u1 is more complicated, but may reduce to the same as u 2  by the use of a 
generalized eigenvalue condition involving both uo and A. 

4. The generalized eigenvalue condition at order A 

The relevant contribution to the isotropic term u1 of tree and one-loop diagrams is given 
to O(c2, A)(A = O(c)) by 

(20) 2 - 1  1 2 u1 = $uo -(4871 ) 

We look for a solution for c in the expression 

[guo(n + 8) - 6Auo] In r. 

4 8 7 1 ~ ~  
U0 = ~ + C A  n+8  

which produces the correct exponentiation at order A, that is a term Ar6f!(n+8) in order to 
agree with expression (8). One requires 

6 
n+8  

lnrcc  l + - c l n r  
C 
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which gives 
18 

n+2‘ 
c = -  

This result has at least two necessary features : (i) it agrees for large n with the previous 
expression (19) and (ii) for n = 1 ,  ( + 2 ) 2  and 44 interactions are identical so that A is no 
longer an independent control variable. Indeed when n = 1, equations (21) and (22) give 

This is precisely the linear combination of uo and A appearing in the hamiltonians (1) and 
(3) and ensures that the equations (21) and (22) are correct for n = 1 .  

Moreover i t  is encouraging that, given the existence of an eigenvalue condition 

U0 = f ( E )  (23) 

which ensures scaling behaviour for the term in u 2  linear in A, then the condition 

18A 
U0 = f(‘)+n+2 

ensures the same scaling behaviour for the term in u1  linear in A, to all orders in E. 

The proof is as follows. Consider the general expressions for u1  and u2 

u1 = C ( U ~ A , - ~ A U ; - ~ B ~ +  . . .) 
1 

u 2  = C(- lAu; - ’Cl+  . . .). 
1 

The terms in brackets represent the sum over all graphs at a given order 1 in c .  We exhibit 
explicitly that there is also a polynomial in A in each expression. A , ,  B, and C, represent 
the sum over all appropriate graphs at a given order 1. The factors of 1 are for convenience 
in counting. 

Now, for any graphs g with a given topology of 1 vertices, one has 

l8Af = Cf+(n+2)Bf. (26) 

Proof :  Graphs Cf and Bf have one A vertex inserted where there is a uo vertex in Af. In Cf, 
the spin indices of the A vertex must be traceable out to the external legs, since u 2  arises 
in the tensor dijkl. In Af one has a similar contribution in which the spin on the lines of the 
u o  vertex which has replaced the A vertex of Cf can be traced out to the external legs. 
Such graphs in A: are down by a factor of eighteen-a factor of six (because uo 
appears with (4!)-’  and A with in the hamiltonian) and a factor of three difference in 
the contractions to  form the dijdkl and B i j k l  tensors. However in Af a pair of spin indices 
of this uo vertex may also eventually contract: contractions of this type are contained in 
Bf. The relevant factor 18/(n + 2) arises because the contraction of a pair of lines from a 
( + 2 ) 2  vertex produces a factor of (n+2) whereas from a 44 vertex one obtains only a 
factor of three. 

To paraphrase this argument: take a given u o  vertex in graph Af .  There are two 
classes of contractions which the legs of this vertex can make : (a) their spin indices can be 
traced to the external legs and (b )  at least one pair of the spin indices eventually contracts. 
Graphs Cf reproduce class (a) ;graphs Bf reproduce class (b). The argument is the same in 
spirit to that used by Balian and Toulouse (1973). 
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Equation (26) ensures that when the condition (24) is substituted into equations (25) 
then for each graph the coefficients of A in (25a) and (256) are equal up to a unique factor 
and hence if exponentiation takes place in the U’ function it also takes place in u l ,  with 
the same exponent in both cases. 

We have not dotted all the i’s in this argument but in conjunction with the fact that 
we have checked it explicitly to order c3 it should be convincing enough. 

5. Some results at order A* 

In this section we consider briefly the structure of the O(A’) terms in the c expansion. The 
results are in agreement with the picture obtained by the large n expansion in 0 3 but 
calculations have not yet been made to sufficient level to be regarded as completely 
convincing. 

First we consider the anisotropic term U’, up to graphs with three vertices (figures l(a) 
to l(d)). There are two distinct types of contributions; those from graphs with two A 
vertices and those from graphs with one A vertex in conjunction with the eigenvalue 
condition (24). Since we are interested principally in studying the exponentiation of the 
In r terms we retain only A’ In r and A’E ln’r terms. The result is 

27A2(n - 2) 
8n2(n + 2) 

U2 = 

For definiteness, we assume that these logarithms exponentiate to two powers of r ,  the 
leading power of which has the correct scaling behaviour, ie in lowest order in E, 

(28) u2 = f A Z ( r ( 1 6 - n ) f / ( 2 n +  16)-ra3f).  

I t  is trivial to cqmpare the c expansion of expression (28) with (27) and obtain 

6 
a3 = - 

n+8 
and 

27(n - 2)(n + 8) 
= 4nZ(n+2)(n - 4 ) ~ ‘  

Equation (29) supports our previous statement in 0 3 that the second power of in 
equation (28) is precisely the power of r associated with the term in u2 linear in A. Note 
that these terms are O(A’/e), that is O(C). 

We have also checked this structure for u2 for graphs with four vertices. If the logar- 
ithms are to exponentiate to the two powers of I ,  generalizing equation (28), then one finds 
two constraints, one from the leading logarithms and one from the next to leading 
logarithm terms. Both of theseconstraints are satisfied when c13 is theexponent associated 
with the O(A) term in U’, as given in equation (8). 

As an aside we remark that we have shown that all contributions of O(A2) to u2 will 
contain a factor of (n - 2) to all orders in E. The proof is in the same spirit as the proof of 
the condition (24) in 0 4. The fact that these O(A’) contributions to U’ vanish for n = 2 
need not imply they are small for n = 3, since a factor of n - 4 appears in the denominator 
of expression (30). 

Finally, we have looked at the O(A2) term in u1  to order E’, in the same spirit as 
above. One may find a correction of order (A’/€) to the condition (24) to ensure that the 
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In r and ln2r terms exponentiate to the same two powers of r as in equations (28) and (29). 
We quote the result 

18A 72(n - l ) (n  + 8)  A2 
= f ( E ) + x -  16~’n (n+2)~  E 

-( 1 + O(E)). 

Note that this last correction of 0(A2/c )  vanishes for n = 1, as it should according to the 
arguments following equation (22). 

However, it should be clear that such higher-order extensions of the eigenvalue 
condition require further study. 

6.  Conclusion 

The original aim of this work was to estimate the exponent a2 related to the anisotropy 
parameter, A. Up to order c3 ,  it is found that one cannot reliably determine whether or 
not A is an irrelevant variable in the critical region for a system with a two- or three- 
dimensional ‘spin’ vector in three space dimensions. 

It became clear that the general structure of the correlation functions is also of 
considerable interest; generally speaking, as one looks at higher powers of A, there 
appear more and more corrections to the leading behaviour associated with the given 
power of A. These corrections involve powers of inverse susceptibility r, differing by 
order E from the leading power and make the reconstruction of the critical behaviour 
increasingly more complicated. However, we have tried to  suggest that the situation is 
not as black as might at first appear because there are sufficient regularities in these 
correction terms to allow further progress. 

We conclude by remarking on the significance of the relevance or otherwise of A in 
the critical region. It is interesting to consider three possibilities. 

(i) A is irrelevant (a2 > al). Then the isotropic fixed point (corresponding to A = 0, 
uo as in equation (6)) is attractive and the exponent a2 - a1 governs only corrections to 
scaling behaviour which are negligible close enough to the critical point. 

(ii) A is relevant (a2 < a l )  and the system undergoes a second order phase transition. 
Then the exponent a2 - a1 controls the crossover from isotropic to a new behaviour. The 
inverse susceptibility r becomes arbitrarily small at the critical point and in order to 
obtain the true critical behaviour of for example the correlation function u1 one must 
know the asymptotic behaviour of the power series of u1 in Ara2-’l .  

(iii) A is relevant and the system undergoes a first order phase transition. At the 
transition, r has some finite value and the behaviour just above the transition might 
possibly be determined fairly accurately by some low order terms in the expansion in 
powers of A. 

The expansion about the isotropic fixed point enables one in principle to determine 
whether or not A is relevant but does not discriminate readily between situations (ii) and 
(iii). One may turn then to a study of the renormalization group (Wilson and Kogut 
1973) or the Callan-Symanzik equation (see Brezin et al1973a and references therein). At 
order E one finds that the isotropic fixed point is attractive for n < 4, as expected. For 
n > 4, the isotropic fixed point is repulsive, and there exists an attractive fixed point with 
A = O(E) and A < 0. Therefore if one has a system with a small negative A (and n > 4) 
it will have critical behaviour determined by this second fixed point, corresponding to 
possibility (ii) above. For A > 0 (and n > 4) the behaviour is governed by neither of these 
fixed points ; it is in this situation that an expansion of the form considered in this paper 



1678 

might be useful. For n = 4, by working to order c z  one finds that the isotropic fixed point 
is repulsive, again as expected since the c2  term in a, - a1 (situation (ii)) is always negative. 

Thus the use of the renormalization group confirms and supplements the information 
in this paper. These and other results will be reported in greater detail by Bervillier 
(1973). 

I J Ketley and D J Wallace 
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Note added in proox Recursion formulae (see Wilson and Kogut 1973) have also been 
used by Aharony (to be published) to study the nature of the phase transition in possibility 
(ii) of our conclusion. 
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